Transcatheter or Surgical Aortic Valve
Replacement in Intermediate Risk Patients
with Aortic Stenosis:
Final Results from the PARTNER 2A Trial

Craig R. Smith, MD on behalf of the PARTNER Trial Investigators

Presenter Disclosure Information for PARTNER 2A at ACC Chicago, IL; April 2, 2016

Craig R. Smith, MD

PARTNER Trial sponsor (Edwards LifeSciences) reimburses customary travel and other expenses

Background (1)

 In PARTNER 1, transcatheter aortic valve replacement (TAVR) was superior to standard therapy in patients with symptomatic severe aortic stenosis who were not candidates for surgery AND was equivalent to surgery in highrisk patients.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 21, 2010

VOL. 363 NO. 17

Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery

Martin B. Leon, M.D., Craig R. Smith, M.D., Michael Mack, M.D., D. Craig Miller, M.D., Jeffrey W. Moses, M.D., Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D., Gregory P. Fontana, M.D., Raj R. Makkar, M.D., David L. Brown, M.D., Peter C. Block, M.D., Robert A. Guyton, M.D., Augusto D. Pichard, M.D., Joseph E. Bavaria, M.D., Howard C. Herrmann, M.D., Pamela S. Douglas, M.D., John L. Petersen, M.D., Joid J. Akin, M.S., William N. Anderson, Ph.D., Duolao Wang, Ph.D., and Stuart Pocock, Ph.D., for the PARTNER Trial Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

IUNE 9, 2011

VOL. 364 NO. 23

Transcatheter and Surgical Aortic-Valve Replacement in High-Risk Patients

Craig R. Smith, M.D., Martin B. Leon, M.D., Michael J. Mack, M.D., D. Craig Miller, M.D., Jeffrey W. Moses, M.D., Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D., Gregory P. Fontana, M.D., Raj R. Makkar, M.D., Mathew Williams, M.D., Todd Dewey, M.D., Samir Kapadia, M.D., Vasilis Babaliaros, M.D., Vinod H. Thourani, M.D., Paul Corso, M.D., Augusto D. Pichard, M.D., Joseph E. Bavaria, M.D., Howard C. Herrmann, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., Duolao Wang, Ph.D., and Stuart J. Pocock, Ph.D., for the PARTNER Trial Investigators*

Background (2)

- However, early operator experiences using first generation TAVR systems resulted in frequent peri-procedural complications.
- Lower profile second generation TAVR systems have been associated with improved clinical outcomes.
- Recently, there has been a worldwide trend to extend TAVR therapy to lower-risk patients, but rigorous evidence-based medicine validation is lacking.

Purpose

To compare the safety and effectiveness of the second generation SAPIEN XT TAVR system with conventional surgery in *intermediate-risk* patients using rigorous clinical trial methodologies.

The PARTNER 2A Trial Study Design

Primary Endpoint: All-Cause Mortality or Disabling Stroke at Two Years

The PARTNER 2A Trial Participating Sites

The PARTNER 2A Trial Top Enrolling Sites

Columbia University New York, NY Susheel Kodali & Mathew Williams	206	Mayo Clinic Rochester, MN Verghese Mathew & Kevin Greason	53
Cedars-Sinai Medical Center Los Angeles, CA Raj Makkar & Alfredo Trento	205	Baylor Heart Hospital Plano, TX William Brinkman & David Brown	52
Emory University Atlanta, GA Vinod Thourani & Vasilis Babaliaros	149	Providence Heart & Vascular Institute Portland, OR Robert Hodson & Jeffrey Swanson	52
University of Pennsylvania Philadelphia, PA Howard Herrmann & Joseph Bavaria	82	The Christ Hospital Cincinnati, OH Dean Kereiakes & Thomas Ivey	49
Medical City Dallas Dallas, TX Bruce Bowers & Todd Dewey	75	Intermountain Medical Ctr. Murray, UT Brian Whisenant & Kent Jones	49
Barnes Jewish / Washington University St. Louis, MO Alan Zajarias & Hersh Maniar	68	University of Virginia Charlottesville, VA Irving Kron & Scott Lim	48
Washington Hospital Center Washington, DC Augusto Pichard & Paul Corso	57	Scripps Green Hospital La Jolla, CA Paul Teirstein & Scot Brewster	42
Stanford University Palo Alto, CA Craig Miller & Alan Yeung	53	Brigham Women's Hospital Boston, MA Ralph Bolman, III & Frederick G. Welt	41

The PARTNER 2A Trial Study Administration

Co-Principal Investigators

Martin B. Leon, Craig R. Smith Columbia University Medical Ctr, NYC

Executive Committee

Martin B. Leon, Michael Mack, D. Craig Miller, Jeffrey W. Moses, Craig R. Smith, Lars G. Svensson, E. Murat Tuzcu, John G. Webb

Data & Safety Monitoring Board

Chairman: Joseph P. Carrozza
Caritas, St. Elizabeth Med Ctr, Boston

Members: Blase Carabello, Andrew

Wechsler, Eric Peterson

Neurology: K. Michael Welch

Clinical Events Committee

Chairman: Venu Menon Cleveland Clinic, C5 Research

Echo Core Laboratory

Chairman: Wael A. Jaber Cleveland Clinic, C5 Research

Quality of Life and Cost-Effectiveness

Chairman: David J. Cohen
Mid America Heart Institute, Kansas City

Independent Biostatistical Core Laboratory

Melissa Nichols Cardiovascular Research Foundation, NYC Eugene Blackstone Cleveland Clinic, Cleveland, OH

Publications Office

Co-Located at Columbia-CRF and Cleveland Clinic: Director – Maria Alu

Sponsor

Edwards Lifesciences

Inclusion Criteria

- Severe AS: Echo-derived AVA < 0.8 cm² (or AVA index < 0.5 cm²/m²) and mean AVG > 40 mm Hg or peak jet velocity > 4.0 m/s
- Cardiac Symptoms: NYHA Functional Class ≥ II
- Intermediate Risk:
 - 1. Determined by the multi-disciplinary Heart Team
 - 2. Using a guideline STS ≥ 4%, and
 - 3. Adjudicated by case review committee

Key Exclusion Criteria

Anatomic:

- Aortic annulus diameter < 18 mm or > 27 mm (echo or CT)
- Bicuspid AV or predominant AR (> 3+)
- Severe LV dysfunction (LVEF < 20%)
- Untreated CAD requiring revascularization with either unprotected LM coronary disease or Syntax score > 32
- Pre-existing surgical valve in any position

Clinical:

- Serum Cr > 3.0 mg/dL or dialysis dependent
- Acute MI within 1 month
- CVA or TIA within 6 months
- Hemodynamic instability
- Life expectancy < 24 months

PARTNER SAPIEN Platforms Device Evolution

SAPIEN XT SAPIEN SAPIEN 3 Valve Technology Sheath 22-24F 16-20F 14-16F **Compatibility Available Valve Sizes** 23 mm 26 mm **23mm 26mm** 29mm* 20 mm 23 mm 26 mm 29 mm

*First Implant Oct 30, 2012

Primary Endpoint

- Non-hierarchical composite of all-cause mortality or disabling stroke* at two years
- Intention-to-treat population is the primary analysis;
 - As-Treated (AT) population also a pre-specified, powered analysis
 - Transfemoral (TF) subgroup pre-specified
- All patients followed for at least 2 years
- Event rates by Kaplan-Meier estimates

^{*} Disabling stroke = CEC adjudicated stroke by a neurologist with a modified Rankin score of 2 or greater at 90-day evaluation

Other Important Endpoints VARC 2 Definitions

Safety

- Cardiac mortality
- Major vascular complications
- All strokes and TIAs
- Repeat hospitalizations
- Peri-procedural MIs
- Acute kidney injury
- Life-threatening or disabling bleeding
- New permanent pacemakers
- New onset atrial fibrillation
- Repeat AV intervention
- Endocarditis

Efficacy

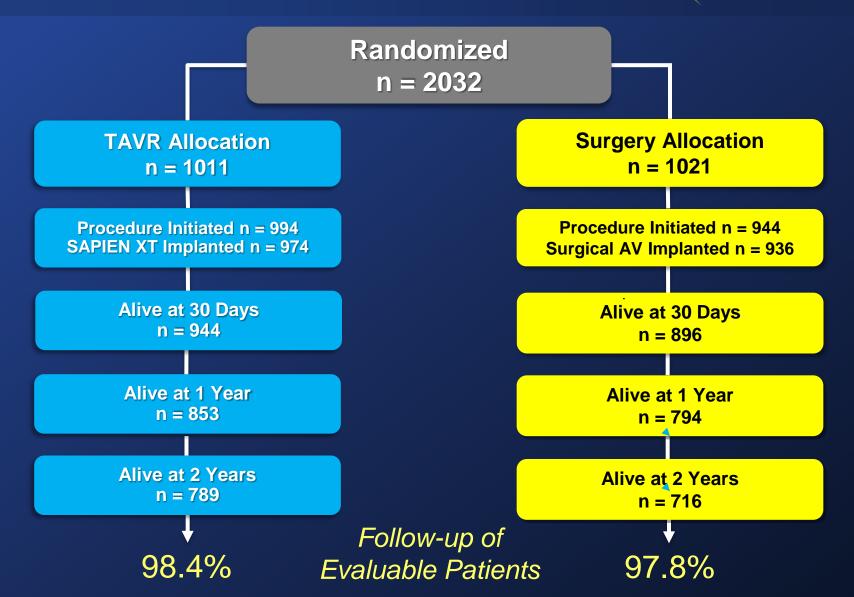
- NYHA class
- QOL instruments
- 6-minute walk test
- Days alive out-of-hospital
- ICU and index hospital LOS

Echo Valve Performance

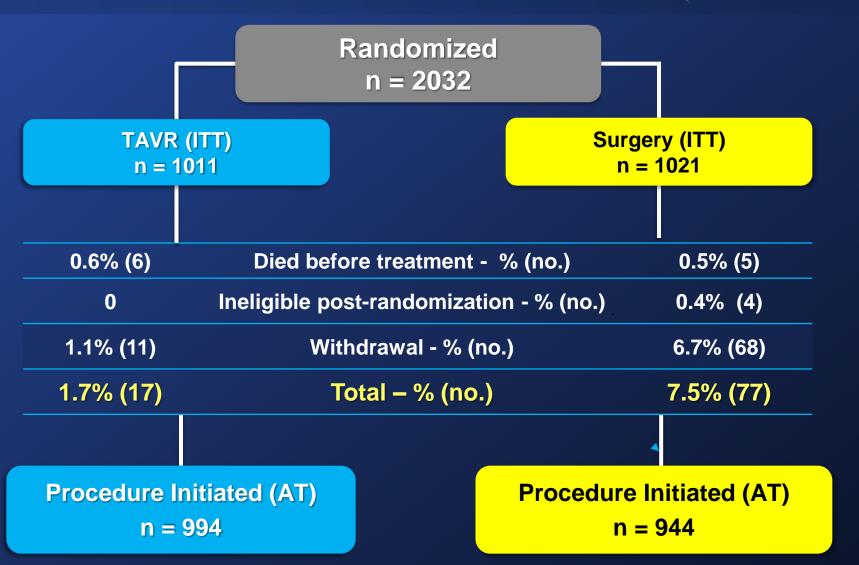
- Mean AV gradient
- Effective orifice area (and index)
- LV function (ejection fraction)
- Paravalvular regurgitation (PVR)

Statistical Analysis Plan

- Primary hypothesis is non-inferiority of test (SAPIEN XT) vs. control (surgery) for all-cause mortality or disabling stroke at 2 years (non-hierarchical)
- Non-inferiority ratio: 1.20
- One-sided alpha: 0.025
- Assumptions (for 1:1 randomization)
 - Event rate: 30% in both trial arms
 - Power: 80%
- Sample size: 1744 patients (adjusted to 2,000 patients to account for lost to follow-up and other trial contingencies)


Study Methodology

- Every patient reviewed (including imaging studies) by multi-disciplinary Heart Team AND case review committee
- Systematic assessment by neurologists before and after index procedures for ascertainment of neurologic events
- MDCT evaluation of annulus dimensions recommended but not consistently applied
- In patients with CAD requiring revascularization: treatment (PCI or CABG) allowed (unless unprotected left main disease or Syntax score > 32) at the discretion of the Heart Team
- 100% CEC adjudication of all major clinical events (VARC 2 definitions whenever possible)


Study Flow
Vital Status

Study Populations ITT to AT Patient Dropouts

Study PopulationsAT to VI Procedural Events

TAVR
Procedure Initiated (AT)
n = 994

Surgery
Procedure Initiated (AT)
n = 944

12	Aborted procedures	5	Aborted procedures
	8 imaging findings, 2 access failure, 2 procedure complications		5 excessive Ao calcium
7	Conversion to open	1	Conversion to BAV
	3 valve embolization, 3 annulus rupture, 1 RV perforation		1 severe hypotension
1	Ineligible for TAVR	2	Not treated as assigned
20	Total	8	Total

TAVR Implant (VI) n = 974 Surgical Implant (VI) n = 936

Baseline Patient Characteristics Demographics and Vascular Disease

Characteristic	TAVR (n = 1011)	Surgery (n = 1021)	p-value
Age - yrs	81.5 ± 6.7	81.7 ± 6.7	0.63
Male - %	54.2	54.8	0.79
STS Score - %	5.8 ± 2.1	5.8 ± 1.9	0.29
NYHA Class III or IV - %	77.3	76.1	0.53
CAD - %	69.2	66.5	0.20
Prior CABG - %	23.6	25.6	0.33
Cerebrovascular Disease - %	32.1	31.0	0.60
PVD - %	27.9	32.9	0.02

Baseline Patient Characteristics Other Co-morbidities

Characteristic (%)	TAVR (n = 1011)	Surgery (n = 1021)	p-value
Diabetes	37.7	34.2	0.11
COPD – Any	31.8	30.0	0.48
O ₂ dependent	3.4	3.1	0.64
Creatinine > 2 mg/dL	5.0	5.2	0.92
Atrial Fibrillation	31.0	35.2	0.05
Permanent Pacemaker	11.7	12.0	0.84
Frailty (15 ft walk > 7 s)	44.4	46.4	0.43
Liver Disease	1.9	2.5	0.37

Baseline Patient Characteristics Echocardiography Findings

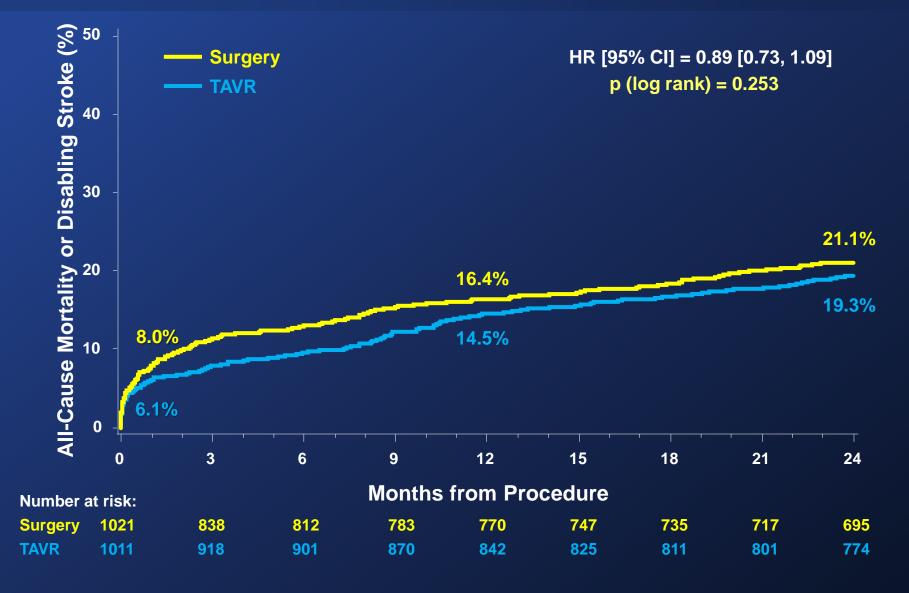
Characteristic	TAVR (n = 1011)		
Aortic Valve Area - cm ²	0.70 ± 0.2	0.69 ± 0.2	0.06
Mean Gradient - mmHg	44.9 ± 13.4	44.6 ± 12.5	0.82
LV Ejection Fraction - %	56.2 ± 10.8	55.3 ± 11.9	0.48
LV Mass Index - g/m ²	119.8 ± 31.5	120.6 ± 32.6	0.74
Mod-Severe MR - %	16.8	19.1	0.22
Aortic Regurgitation - %			0.52
Mild	40.6%	42.5%	
Mod-Severe	11.2%	12.0%	

Procedural Characteristics (AT) PARTNER II

Characteristic	TAVR (n = 994)	Surgery (n = 944)	p-value
Anesthesia Time (min)	207	333	< 0.001
Procedure Time (min)	103	237	< 0.001
Fluoroscopy Time (min)	20	NA	NA
Aortic Cross-clamp Time (min)	NA	75	NA
Total CPB Time (min)	NA	104	NA
Median ICU Stay (days)	2.0 [2, 4]	4.0 [3, 6]	< 0.001
Median Total Length of Stay (days)	6.0 [4, 9]	9.0 [8, 14]	< 0.001

Median [IQR]

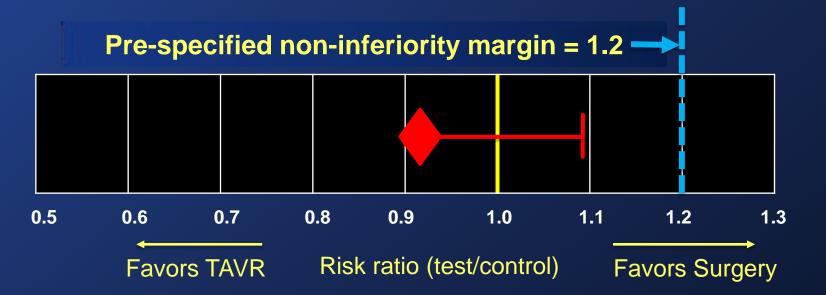
Procedural Complications (AT)



Complication	TAVR (n = 994)	Surgery (n = 944)
Procedural deaths (0-3 days)	12 (1.2%)	10 (1.1%)
≥ 2 transcatheter valves*	26 (2.6%)	NA
Valve embolization	10 (1.0%)	NA
Annular rupture	3 (0.3%)	NA
Coronary obstruction	4 (0.4%)	6 (0.6%)
Access site infections	15 (1.2%)	12 (1.3%)

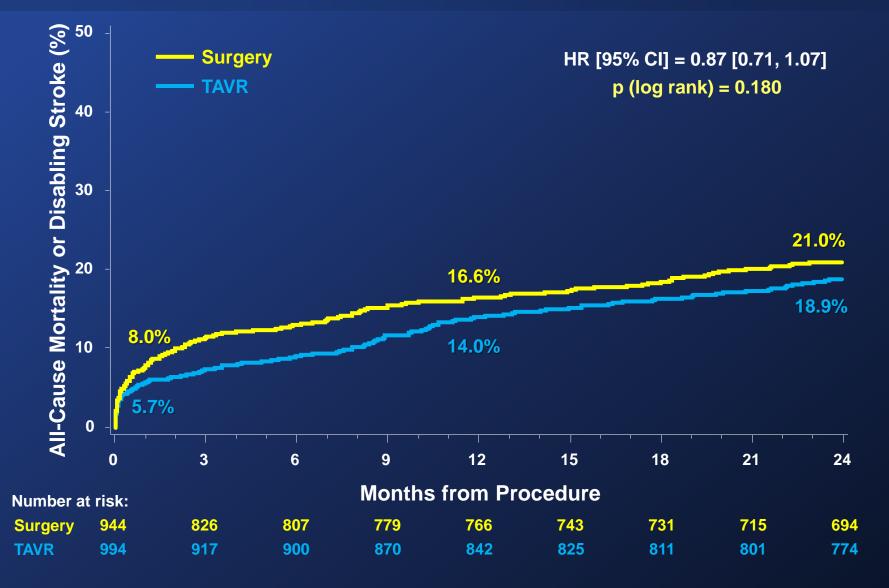
^{*} Valve-in-valve (22) or with valve embolization (4)

Primary Endpoint (ITT) All-cause Mortality or Disabling Stroke


Primary Endpoint (ITT) All-cause Mortality or Disabling Stroke

TAVR n = 1011 19.3% SAVR n = 1021 21.1%

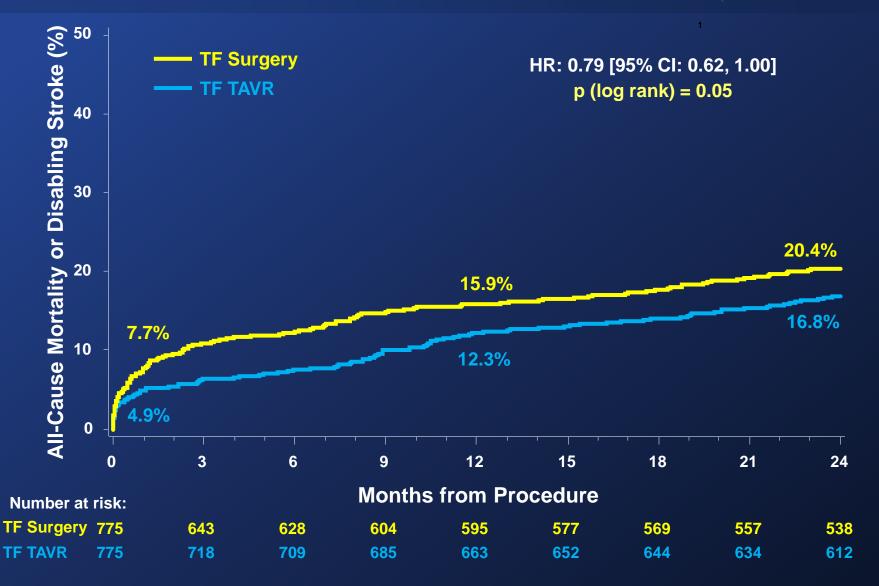
Relative Risk Ratio 0.92 Upper 1-sided 97.5%Cl 1.09


Non-Inferiority p-value = 0.001

Primary Non-Inferiority Endpoint Met

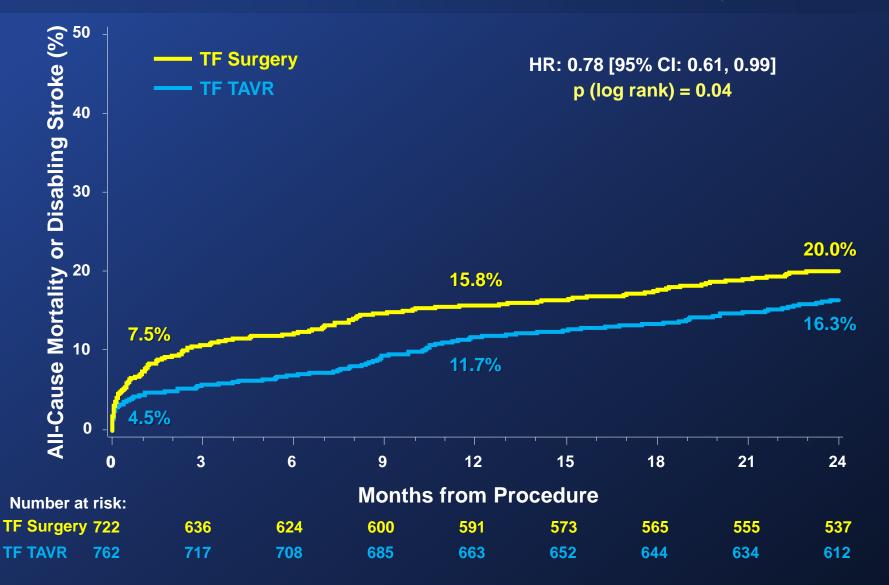
Primary Endpoint (AT) All-cause Mortality or Disabling Stroke

Primary Endpoint Subgroup Analysis


Favors Surgery

Favors TAVR

Subgroup	TAVR (%) n = 1011	AVR (%) n = 1021	Hazard Ratio (95% CI)	HR (95% CI)	p-value for interaction
Overall	19.3	21.1		0.89 [0.73-1.09]	
Age	18.0	19.5		0.90 [0.69-1.17]	0.96
< 85 ≥ 85	21.5	23.6		0.89 [0.65-1.20]	0.90
Sex	16.9	20.3		0.81 [0.59-1.10]	0.07
Female Male	21.4	21.7	_	0.96 [0.74-1.25]	0.37
STS Score	15.8	18.4		0.84 [0.61-1.16]	
≤ 5 > 5	22.4	23.1	_ -	0.94 [0.73-1.21]	0.60
LV Ejection Fraction	19.1	21.5		0.84 [0.56-1.25]	0.07
≤ 55 > 55	20.1	18.0	-	1.11 [0.81-1.53]	0.27
Mod or Severe Mitral Regurgitation	17.8	20.3		0.85 [0.67-1.08]	0.50
No Yes	25.9	24.4		1.00 [0.64-1.57]	0.53
Previous CABG	20.6	22.2	_	0.91 [0.73-1.13]	0.00
No Yes	15.3	18.0		0.82 [0.53-1.27]	0.69
Peripheral Vascular Disease	18.2	20.7		0.85 [0.67-1.09]	0.47
No Yes	22.3	22.0		0.99 [0.71-1.40]	0.47
15 Foot Walk Test	17.7	20.9		0.82 [0.62-1.09]	0.40
≤7 secs >7 secs	20.7	20.8		0.97 [0.71-1.31]	0.43
Access Route	16.8	20.4		0.79 [0.62-1.00]	0.00
Transfemoral Transthoracic	27.7	23.4		1.21 [0.84-1.74]	0.06


TF Primary Endpoint (ITT) All-cause Mortality or Disabling Stroke

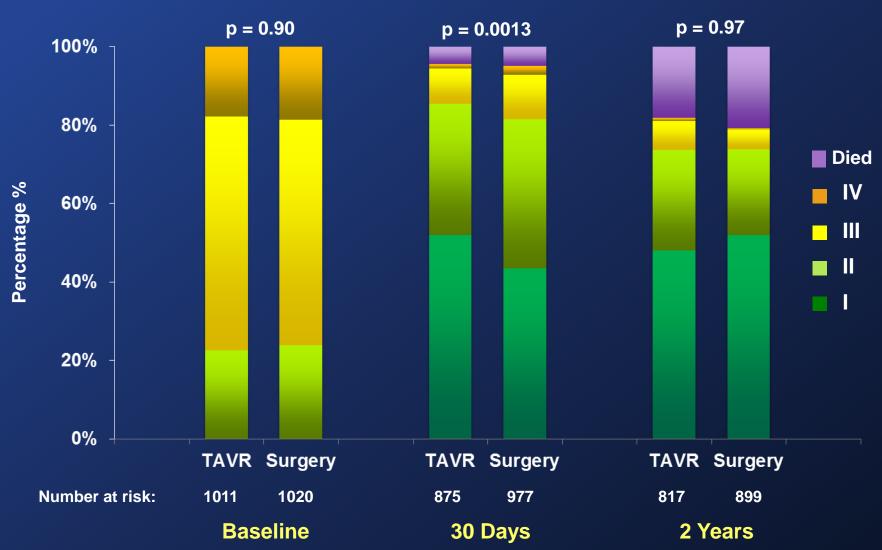
TF Primary Endpoint (AT) All-cause Mortality or Disabling Stroke

Primary Endpoint Events (ITT) At 30 Days and 2 Years

	30 Days			2 Years		
Events (%)	TAVR (n = 1011)	Surgery (n = 1021)	p-value*	TAVR (n = 1011)	Surgery (n = 1021)	p-value*
Death (all-cause) and Stroke (disabling)	6.1	8.0	0.11	19.3	21.1	0.33
Death						
All-cause	3.9	4.1	0.78	16.7	18.0	0.45
Cardiovascular	3.3	3.2	0.92	10.1	11.3	0.38
Neurological Events						
All Stroke	5.5	6.1	0.57	9.5	8.9	0.67
Disabling Stroke	3.2	4.3	0.20	6.2	6.4	0.83
TIA	0.9	0.4	0.17	3.7	2.3	0.09

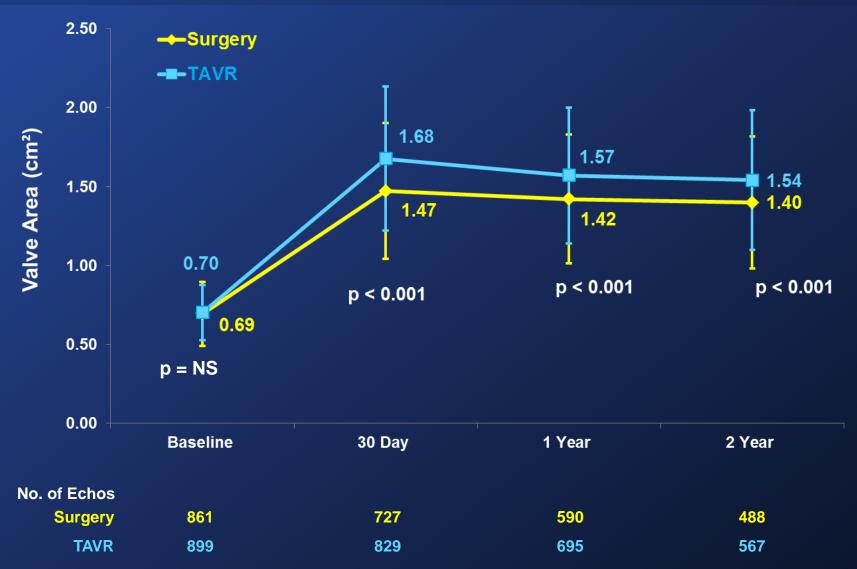
^{*}Event rates are KM estimates, p-values are point in time

Other Clinical Endpoints (ITT) At 30 Days and 2 Years

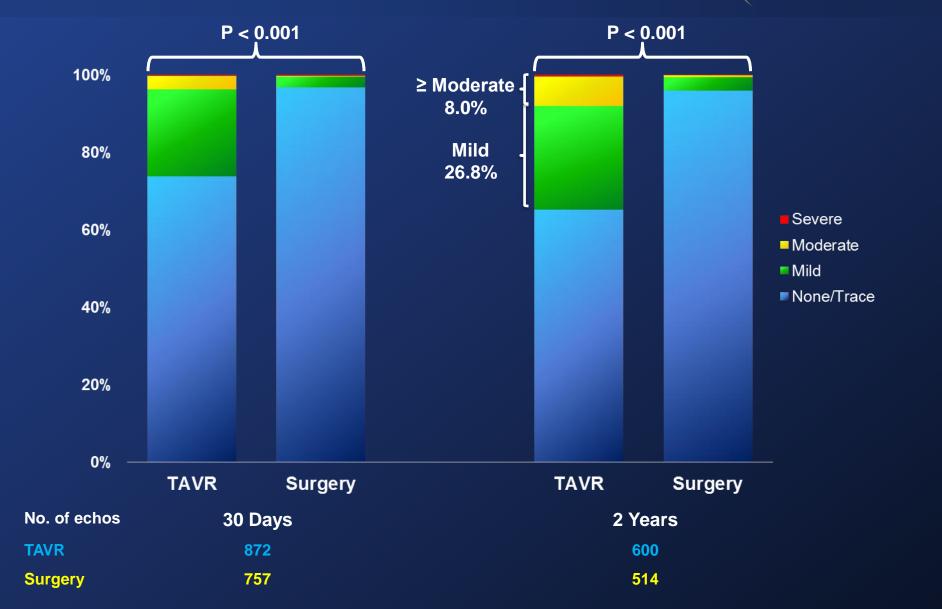

		30 Days		2 Years		
Events (%)	TAVR (n = 1011)	Surgery (n = 1021)	p-value*	TAVR (n = 1011)	Surgery (n = 1021)	p-value*
Rehospitalization	6.5	6.5	0.99	19.6	17.3	0.22
MI	1.2	1.9	0.22	3.6	4.1	0.56
Major Vascular Complications	7.9	5.0	0.008	8.6	5.5	0.006
Life-Threatening / Disabling Bleeding	10.4	43.4	<0.001	17.3	47.0	<0.001
AKI (Stage III)	1.3	3.1	0.006	3.8	6.2	0.02
New Atrial Fibrillation	9.1	26.4	<0.001	11.3	29.3	<0.001
New Permanent Pacemaker	8.5	6.9	0.17	11.8	10.3	0.29
Re-intervention	0.4	0.0	0.05	1.4	0.6	0.09
Endocarditis	0.0	0.0	NA	1.2	0.7	0.22

^{*}Event rates are KM estimates, p-values are point in time

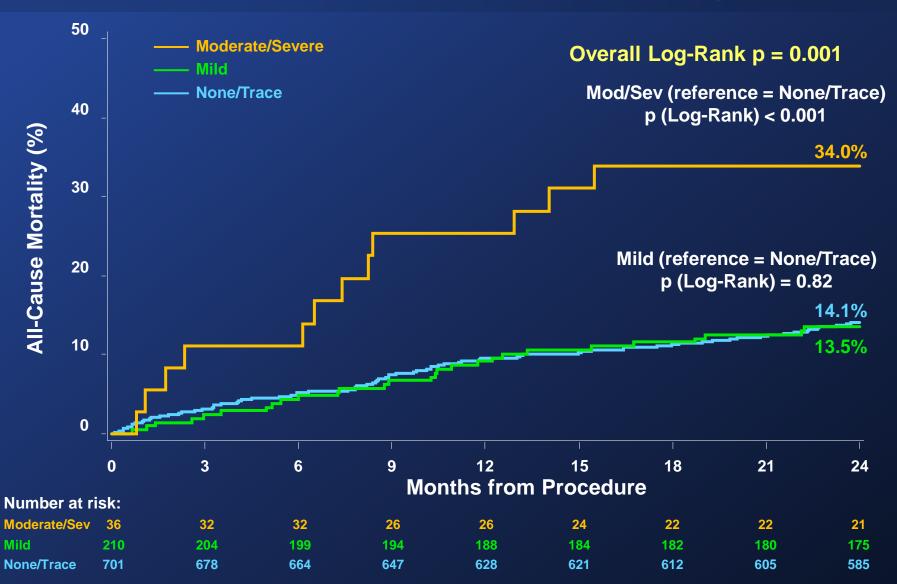
NYHA Class (ITT) All Patients



Echocardiography Findings (VI) Aortic Valve Area



Error bars represent ± Standard Deviation


Paravalvular Regurgitation (VI) 3-Class Grading Scheme

Severity of PVR at 30 Days and All-cause Mortality at 2 Years (VI)

The PARTNER 2A Trial Conclusions (1)

In intermediate-risk patients with symptomatic severe aortic stenosis, results from the PARTNER 2A trial demonstrated that...

- TAVR using SAPIEN XT and surgery were similar (non-inferior) for the primary endpoint (all-cause mortality or disabling stroke) at 2 years.
- In the transfemoral subgroup (76% of patients), TAVR using SAPIEN XT significantly reduced all-cause mortality or disabling stroke vs. surgery (ITT: p = 0.05, AT: p = 0.04).

The PARTNER 2A Trial Conclusions (2)

- Other clinical outcomes:
 - TAVR reduced AKI, severe bleeding, new AF, and LOS
 - Surgery reduced vascular complications and PVR
- The SAPIEN XT valve significantly increased echo AVA compared to surgery.
- In the SAPIEN XT TAVR cohort, moderate or severe PVR, but not mild PVR, was associated with increased mortality at 2 years.

The PARTNER 2A Trial Clinical Implications

- The results from PARTNER 2A support the use of TAVR as an alternative to surgery in intermediate risk patients, similar to those included in this trial.
- In patients who are candidates for transfemoral access, TAVR may result in additional clinical advantages.
- Long-term durability assessments of transcatheter bioprosthetic valves are still lacking and extrapolation of these findings to low-risk patients requires further clinical trial validation.